6.3 The CDF Technique

Example 1:

$$f(\mathbf{x}) = \begin{cases} 2x & 0 \le x \le 1 \\ 0 & o.w. \end{cases}$$

Let U=3X-1, find the pdf of U by the CDF technique.

Example 2:

$$f(\mathbf{x}) = \begin{cases} \frac{x+1}{2} & -1 \le x \le 1\\ 0 & o.w. \end{cases}$$

Let $U = X^2$, find the pdf of U by the CDF technique.

Example 3:

$$f(\mathbf{x}) = \begin{cases} 2(1-x) & 0 \le x \le 1 \\ 0 & o.w. \end{cases}$$

- (a) U=2X-1, find pdf of U
- (b) U=-ln(X), find pdf of U
- (c) Let $U = X^2$, find the pdf of U.

Example 4:

$$f(x) = \begin{cases} x & 0 \le x \le 1 \\ 1 & 1 < x \le 1.5 \\ 0 & o.w. \end{cases}$$

Let U=10X-4, find the pdf of U by the CDF technique

Example 5:

$$f(x,y) = \begin{cases} 3x & 0 \le y \le x \le 1 \\ 0 & o.w. \end{cases}$$

Let U=X-Y, find the pdf of U by the CDF technique.

Example 6:

$$f(\mathbf{x}, \mathbf{y}) = \begin{cases} 1 & 0 \le x \le 1, & 0 \le y \le 1 \\ 0 & o.w. \end{cases}$$

Let U=X+Y, find the pdf of U by the CDF technique.

6.4. The Method of Transformation

Example 1:

$$f(\mathbf{x}) = \begin{cases} 2x & 0 \le x \le 1 \\ 0 & o.w. \end{cases}$$

Let U=3X-1, find the pdf of U by the transformation method.

Example 2:

Let $X^Beta (6,2)$, and U=1-X.

Find the pdf of U by the transformation method.

Example 3:

$$f(\mathbf{x}) = \begin{cases} \frac{1}{4} & 1 \le x \le 5 \\ 0 & o.w. \end{cases}$$

Let $U = 2X^2 + 3$, find the pdf of U by the transformation method.

Example 4:

Let X~ Exp (3), and $U = \sqrt{X}$

Find the pdf of U by the transformation method.

6.5. The Method of MGF

Example 1:

Let $X_1, X_1, ..., X_n$ be independently normally distributed with $E[X_i] = \mu_i$ and $V[X_i] = \sigma_i^2$ for i=1,2,...n

And let a_1, a_2, \dots, a_n be constants. If $U = \sum_{i=1}^n a_i x_i$

Show that $U \sim N(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2)$

Example 2:

Let
$$X_i$$
 ~Gamma (α_i, β) for i=1,2,...n and $U = X_1 + X_2 + ... + X_n$

Show that $U \sim \text{Gamma}(\alpha_1 + \alpha_2 + ... + \alpha_n, \beta)$

Example 3:

Let
$$X_i \sim \text{Bin}(n_i, p)$$
, for i=1,2,...k and $U = X_1 + X_2 + ... + X_n$

Show that
$$U \sim \text{Bin}(n_1 + n_2 + ... + n_k, p)$$

Example 4:

Let X_1 and X_2 be independent Poisson random variables with mean λ_1 and λ_2 , respectively. Find

- (a) The probability function of $U = X_1 + X_2$
- (b) The conditional probability function of X_1 given that $X_1 + X_2 = m$

Example 5:

Let Z^N (0,1), and $U = Z^2$ Show that $U \sim \chi^2(1)$